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The superposition principle and sectors are studied and their properties in some
types of logic are derived.

1. INTRODUCTION

Let L be a logic, i.e. an orthocomplemented partially ordered set with
the first and last elements 0 and 1, respectively, in which \/ g, € L for any
sequence {g;} C L such that a,.<ajL, i#j,i,j=1,2,... and which has the
orthomodularity property: a <b(a,b € L) implies that there isa d € L,d <
a* and such that b= a\/d. The orthocomplementation a->a* in L has the
following properties: (i) (a)"=gq, (i) a<bebt <a?, (i) a\Vat=1.
The elements a,b € L are disjoint (written a L b) if a<b*. The elements
a,be€ L are compatible (written a<>b) if there are a,,b,,¢ € L, mutually
disjoint and such that a=a,\/c and b= b,\/c. We shall also assume that if
a,b,c€ L are mutually compatible then a<b\/c. A map m:L—[0,1]
which satisfies (m(1)=1, 2)m(\/a)=Zm(a;) for any sequence {a;} of
mutually disjoint elements of L, is a state on L. If m is a state that cannot
be written in the form m=cm, +(1 —c)m,, where 0<c<1 and m,, m, are
distinct states, then m is called a pure state. Let M be a set of states on L
and let P be the set of all pure states of L contained in M. If ac L, me P,
define P,={meP:m(a)=1}, L,={acL:m(a)=1}. If P,CP, implies
a<b(a,b€l)and L, CL, implies m;=m, (m;,m,E P), we call (L,M) a
quantum logic. Let (L, M) be a quantum logic; then for any a€ L, a0
there is an m€& P such that m(a)=1. Indeed, if not, then the relation
P,= P, implies a=0, a contradiction. Let L) ={a & L:m(a)=0)}. Clearly,
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L,={a*:a€Ll) and L0={(a*:a€L,}. A state mEM is a superposi-
tion of the states p,ge M if p(a)=0 and ¢(a)=0 imply m(a)=0, or,
equivalently, if p(¢)=1 and g(a)=1 imply m(a)=1. A set S C P is said to
be closed under superpositions if it contains every pure superposition of
any pair of its elements. If S C P is not closed under superpositions, let
A(S) denote the smallest subset of P closed under superpositions and
containing S. The set § C P is a sector if (i) S=A(S), (i) if p,g € S then
there is an rE€A({p,q}) such that r#p,r+q, (i) if g€ P,q& S then
A{p,q})={p,q} for any p€ S. We say that the superposition principle
holds in (L,M) if A{{p,q})+*{p,q} for any p,q € P,p7#q (Pulmannova,
1976).

Let C be the set of all elements of L that are compatible with all the
other elements, i.e., C={a€ L:a<b for all b€ L}. C is called the center
of L. It was shown (Varadarajan, 1962) that C is a Boolean sub-o-algebra
of L. A logic L is called irreducible if its center C is trivial, i.e., if
C={0,1}. If the superposition principle holds in a quantum logic (L, M),
then L is irreducible (Pulmannova, 1976). If p is a pure state and c€ C,
then p(c)=1 or p(¢)=0 (Varadarajan, 1968).

The center C of a logic L is discrete if there exists an at most
countable set {c,},cp of mutually disjoint elements of C such that C
consists precisely of all the lattice sums \/{c,:n€Z}, where Z is an
arbitrary subset of D. The ¢, are called atoms of C. If we define L;=
L[0,¢]={b: beL,b<c}, then L,j€D, are irreducible logics (¢ is the first
element of L;). The logic L can be thought of as a direct sum of the
irreducible logics L. If p is a pure state of L;, we define p by p(a)=p(a/
¢)Xa€L). Then j is a pure state on L. Varadarajan (1968) has shown that
the set P of all pure states of L can be written in the form P=U P;, where
P,={p:p is a pure state on L;}. To any state m on L we can find the states
m; on L, such that m(b)=Zmy(bAc)m(c;), (b€ L) if we set m(b/\c)=
m(bNc¢)/ m(c), m(c,)#0. If m(c)=0, we set m;=0. Let M, be the set of m;
for all me M. If (L, M) is a quantum logic, then (L,, M;) are also quantum
logics. If the irreducible quantum logics (L;, M;) are such that the super-
position principle holds in them, then the sets P,= P, M are the sectors in
P (Pulmannova, 1976).

2. CENTER OF A QUANTUM LOGIC AND SECTORS

Let (L, M) be a quantum logic and let C be the (nontrivial) center of
L. For s5,,5,E P we set 5,~s, if 5,(c)=s,(c) for all c€C. Clearly, ~ is a
relation of equivalence. Let [s] denote the equivalence class of P contain-
ing s € P.
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Theorem 1. If S C P is a sector, then p~gq for any p,¢E S.

Proof. Let p,q € S be such that p<q. Then there 1s an element c€C
such that p(c)=1 (say) and ¢(c)=0. By the proof of Theorem 3 in
Pulmannova (1976) then A({p,q})={ p.q}, which contradicts the supposi-
tion that S is a sector. Hence p~q.

Theorem 2. Let (L, M) be a quantum logic such that the center C
of L is discrete. Let L be the direct sum of Ly, = L;, where the
quantum logics (L;, M;) are such that the superposition principle
holds in them. Then for any p,q € P, p and ¢ belong to the same
sector if and only if p~g.

Proof. Let P,.={p € P:p is a pure state on L;}. Then P, are sectors in
P. Letc;,i=1,2,... be the atoms of C. Clearly, p~q iff p(c;)= g(c;) for all i.
Let p~q and let p € P, . Then p(c; )= q(c; ) =1 and p(c;)=g(c,) =0 for =i,
which implies that g€ P, ; i.e., p and g belong to the same sector P;. [ ]

An observable on the logic L is a map x: B(R)—L from the Borel
subsets B(R) of the real line R into L such that (i) x(R)=1,x(J)=0; (ii) if
EnF=0 then x(E) L x(F),E,F € B(R); (iii) x(U E)=\/x(E), if E,N E
= for i#j,i,j=1,2,.... The spectrum o(x) of an observable x is the
smallest closed set F C R such that x(F)=1. An observable x is bounded if
o(x) is bounded. The norm of a bounded observable x is defined by
|x|| =sup {|t}:t €Eo(x)}. The expectation of an observable x in a state m is
m(x)= [Am(x(d])), if the integral exists.

For a quantum logic (L,M) we define a metric on M by setting
d(p,q)=sup {|p(x) — g(x)|: x € X,}, where X is the set of all observables x
on L such that [{x||<1. It can be shown that | x| =sup {|m(x):me M)
(Gudder, 1965). From this it follows that d(p,q)<2 for any p,gE M. An
observable x on L is simple if o(x)C{0,1}. If a& L, let x, be the simple
observable such that x,({1})=a. For any state m then m(x,)=m(a).

Theorem 3. Let (L, M) be a quantum logic and let p,g € P be such
that d(p,q)<2. Then p~q.

Proof. Let p<q and let ¢ € C be such that p(c)=1,4(c)=0. Let us set
x=x,—x,".[As x, and x.* are compatible, x, — x, ' exists (Varadarajan,
1968)]. Let m be a state on L. Then m(x)=m(x,)— m(x,*)=2m(c)—1; i.e.,
|m(x)| <1, hence ||x|| < 1. Then p(x)— q(x)=p(c)+ g(ct)=2, from which

it follows that d(p,q) =2. ]



918 Pulmannova

Theorem 4. In a quantum logic (L,M), the equivalence classes
[sl,s€ P are open—closed sets in the topology induced by the
metric d.

Proof. Let p be an element of [s]. By Theorem 3, the set {g€ P:d(p,q)
<2} is contained in [s]. This implies that [s] is open. As the equivalence
classes [s],s € P, form a disjoint covering of P, they are also closed. |

If the conditions of Theorem 2 are satisfied, then the sectors are
open—closed sets in P. Thus Theorem 5 can be considered as an analog of
Proposition 4.5 in Roberts and Roepstorff (1969).

3. MINIMAL SUPERPOSITION PRINCIPLE AND SECTORS

Let (L,M) be a quantum logic and P be the set of all pure states
contained in M. For S C P and a € L, let us write S(a)=0 if s(a)=0 for all
s€S. Let S={meP:S(a)=0 imply m(a)=0} (see Varadarajan, 1968;
Gudder, 1970a, b; Berzi and Zecca, 1974). Gudder (1970b) introduced the
following postulate (minimal superposition postulate, MSP): If S is any
finite subset of P and me& S is such that m& Q for any subset Q G S, then
{m,8,}” N S,#< for any §,,.5,CP such that $;N S,=0 and S,US,=

Lemma 1. For any S C P,A(S)CS.

Proof. Let p,qg € S and let p(a)=0, g(a)=0 imply r(a)=0,rE P,a€ L.
Then S(a)=0 imply r(a)=0, i.e., 7€ S. From this it follows that § is closed
under superpositions. From § C S we get A(S) CA(S)= [}

Lemma 2. If the MSP holds in (L, M) then rEA({ p,q}) implies
qgEA{r,p}).p EA({r,q}) for any mutually different p,q,r € P.

Proof. As A({p,q})={p.q}” (Pulmannova, 1976), by the MSP we
have that A({r.p})N{q}+#J, ie, gEA({r.p}). Analoglcally we get pE
A({r,q})- ; ]

Theorem 5. If the MSP holds in (L,M) then A(S)=S for any
finite subset S C P.

Proof. For any s,p € P,A({s,p})={s,p}” . We shall proceed by induc-
tion. Let A({sy,...,85,})={s,...,8} for any k<n and for any {s,,...,5,}
CP.LetseE(s,...,85,,1} be such that s 8 for any S ¢ {s,...,5,4,}- By
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the MSP then there is a pEP,pE{s,5,,.1} N{5p,..,8,} =A{s,5,,., DN
A({sy,-.-,5,}). Then pEA({sy,...,5,}) CA({5},...,5,41})- By Lemma 2, s€
A({p.5,41}), so that s€EA({s},...,5,4,}). Now let g€ {s,,...,5,,,}  be
such that there is a subset S C {5},...,5,,;} such that g€ S. Then S=A(S)
CA({sy .5 8,4,)) imply g€ A({s,...,s,,,}). Thus we obtain
{$p5--es8,01) " CA({s},...58,41}1). The converse implication follows from
Lemma 1. Hence, A(S)= S for any finite S C P. [

For p,qeP,p+#q, let us set p~gq if there is an r&P such that
reA(p,q)),r¥p,r+q. Let us set p~p,pE P.

Theorem 6. Let the MSP hold in the quantum logic (L, M) and let
A({p,q.r)NFA({p,9})UA({q,r}) for any distinct states p,q,r € P
such that p~q,q~r,r @A({ p,q}). Then ~ is an equivalence rela-
tion

Proof. We have only to show the transitivity. Let p~gq,q~r,p,q,r€ P
be distinct states. If r€A({p,q}) then gEA({r,p}) by Lemma 2, which
implies r~p. Let r&A({p,q}) and let meA({p,q.r}),mEA{p.q}).m&
A({q,r}). Clearly, m#p,q,r. If meA({p,r}) then px~r. If m&A({p,r}),
then we get by the MSP that A({m,g )N A({p,r})#D. Let s€ A({m,q})N
A({p,r}). If s=p then p €A({m, q}) implies mE A({ p,q}), a contradiction.
Thus s#p and analogically s#r. Hence p~r. [ ]

The following theorem shows that the condition in Theorem 6 is also
necessary.

Theorem 7. Let the MSP hold in (L,M) and let ~ be an equiva-
lence relation. Then pazq,g~r and A({p,q.r})=A({p,q})U
A({q,r}) imply re A({ p,q}) (p,q,r distinct states in P).

Proof. Let the MSP hold in (L,M) and let ~ be an equivalence
relation. Let pa~q and g~r. Then there is an mEA({ p,7}),m+p,m+*r.
A{p;rCcA({p,q.7})=A{p,q})UA({q,r}) implies mEA({p,q}) or mE
A{q.r)). It mEA(p.a)m#q, then gEA({m,p}). But mEA({p,r))
implies that A({m,p}) CA({p,r}), so that gEA({p,r}), ie., rEA({p,q)}).
We get the same if m=gq. If meA({q,r}) we get analogically that re
A{p.g}- |

Theorem 8. If the suppositions of Theorem 6 hold, then P can be
written as the union of sectors.
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Proof. We shall show that the equivalence classes P, of P by the
relation & are sectors. (i) Let p,g € P,p~q and let r€A({p,q)}). If r#p,q
then r€A({ p,q}) implies p EA({r,q}), i.e., r~gq. From this it follows that
A(Py)= P,. (ii) and (iii) from the definition of sectors are evident. [ |

4. SUPERPOSITION PRINCIPLE IN PROJECTIVE LOGICS

An orthomodular ¢ lattice L is called a projective logic if the follow-
ing conditions are satisfied (Varadarajan, 1968):

(i) Given ¢+ 0 in L, there is a point x <a.

(i) If a0 in L is the lattice sum of a finite set of points then
Lo ={bEL:b<a} is a geometry of finite rank; we shall say
that a is a finite element of L and write dim(a) for the dimen-
sion of Ly .

(iii)) If x,a€L,a#0,1 and x is a point, then there are points y,zE€ L
such that y <a,z<a?' and x<y\/z.

(iv) There exists at least one @ € L such that 4 < dim(a).

If L is projective and its lattice is complete, then every element a of L
is the lattice sum of the points it contains. A projective logic with the
property that any family of mutually disjoint points of L is at most
countable (i.e., L is separable) is complete (Varadarajan, 1968).

Let m be a state on a logic L. Let us set L, ={bEL:m(b)=1}. We
shall say that m is supported if there is an element a,, € L,q,,70 such that
L,={bEL:b>a,}. The element q,, is called a support of the state m.

Theorem 9. Let (L,M) be a quantum logic such that L is a
separable projective logic. In addition, let the following condition
be satisfied: m(a)=m(b)=0 imply m(a\/b)=0(a,bEL,meE P).
Then the superposition principle holds on (L, M).

Proof. First we show that any s€ P is supported (see also Zierler,
1961; Bugajska and Bugajski, 1972). If L9={a€ L:s(a)=0}={0} then
L,={1}. But then L, C L, for any m€& P, which implies s=m, which is
impossible. From this it follows that L2+ {0}. Then there exists at least
one maximal subset of mutually disjoint elements in LY (by the Zorn
lemma) and this subset is at most countable. Let b be the supremum of this
subset. Obviously b is a maximal element of L2. Let a€ LY, then s(a)=
0,5(b)=0 imply s(a\/b)=0. From the maximality of b it follows that
a\/b=bh,ie., a<b. Thus L0={aE€L:a<b},ie, L, ={a€L:b" <a), that
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is, b+ is the support of s. We show that b* is a point. Let e be a point of L
such that e <b". Then there is a state g€ P such that g(e)=1. Let a€ L,
then from g(e)=1,q(a)=1 it follows that g(aA\e)=1, i.e., e<a. Hence,
L,={a€L:e<a}. But then L,CL, implies s=g, ie., b>=e. Now let
51,8, € P, 5,75,. Then there are points e;,e, such that s,(e)=1, s)(e;)=1.
As Ly, ., is a geometry, there is a point e;€ L,e;7#¢),e, such that
e;<e;\Ve, Let s;€EP be such that sy(e;)=1. Let aEL be such that
si(a)=1,5,(a)=1. Then e,<a,e,<a imply e;<e\/e,<a, ie., s;(a)=1.
Hence, s;EA({s},5,}). Clearly, s;s,,5,. Indeed, if s;=s5, then s55(e;)=
1,s,(e))=1 imply s;(e; Ae;) =1, so that e, Ae;#0, i.e., e, = e;, a contradic-
tion. Hence, the superposition principle holds in (L, M). n

We note that in the case of a general projective logic (not necessarily
separable) the superposition principle need not hold unrestrictedly if there
are states in P with no supports.

Lemma 3. Let (L,M) be a quantum logic such that L is a
complete lattice and all states in P are supported. Let us denote by
suppm the support of the state m. Then the following hold.
(1) If mc P, then suppm is a point in L.
(1) Given x € L, x+#0, there is a point a € L such that a <x.
(ili) Every element x € L is the lattice sum of points con-
tained in it.
(iv) m(a,)=1,a € 4,4 is any set, then m(Aa,)=1.

Proof. (1) Let x€L,x#0 be such that x <suppm. Then there is a
state m; € P such that m(x)=1. From m(suppm)=1 it follows that
L,cL,, ie, m=m Hence, x=suppm.

(it) For x50 there is an m &€ P such that m(x)=1, then suppm <x
and suppm is a point by (i).

(1) Let a€L,a+0. For any m&€P,, suppm<a. Let bEL be such
that suppm <b for any me& P,. Then m(b)=1 for any me€ P, imply that
P,C P, and from this it follows that a <b. Hence, a=\/{suppm:mEP,}.
Now let g <a be a point. Then there is an m &€ P such that m(g)=1. From
suppm <gq it follows that suppm =g and g <« implies that m € P,. Hence,
a=\/{q:9<a,q is a point}.

@iv) m(a,)=1,a €A imply that suppm<a,aEA, ie., suppm< A
{a,;a€A}. Hence, m(Na,)=1. [ ]

Points e, e, € L are perspective if there is a point e; € L,e;#¢,, e, such
that e; <e,\Ve,.
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Theorem 10. Let (L,M) be a quantum logic such that L is a
complete lattice and all the states in P are supported. Then for any
my,m, € P,m ~m, if and only if suppm, and suppm, are perspec-
tive.

Proof. Let m;~m,; then there is a state mEP such that me
A({m;,m,}), mm,,m,. From this it follows that suppm, <a,suppm,<a
imply suppm<a(a€L). Hence, suppm <suppm,\/suppm, Now let
suppm, and suppm, be perspective. Let e L be a point such that
e < suppm; \/supp m,, e 7 supp m,,suppm,. Let m € P be such that m(e)=1.
Clearly, suppm=e. If a€ L is such that m,(a)=1,m,(a)=1, then suppm,
<a,suppm,<a imply suppm < a, i.e., m(a)=1. Hence, mEA({m,m,}). W
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