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The superposition principle and sectors are studied and their properties in some 
types of logic are derived. 

1. I N T R O D U C T I O N  

Let L be a logic, i.e. an o r thocomplemented  partially ordered set with 
the first and last elements 0 and  1, respectively, in which V ai E L for any 
sequence { a i ) c L  such that a~ ~<a/-, ivej, i , j= 1,2 . . . .  and which has the 
or thomodular i ty  property:  a <-< b(a,b E L) implies that there is a d E L ,d  <<. 
a • and such that b = a V d .  The or thocomplementa t ion  a~-~a • in L has the 
following properties: (i) ( a • 1 7 7  (ii) a<<.bc=~b • <<a • (iii) a V a •  
The elements a, b E L  a r e  disjoint (written a •  if a<b • The elements 
a, b E L  are compatible (written a<---~b) if there are a l ,b l , cEL ,  mutual ly  
disjoint and such that a = a l V c  and b = blVC. We shall also assume that if 
a , b , c ~ L  are mutual ly  compatible  then a~--~bVc. A map  m:L--->[0,1] 
which satisfies (1)m(1)= 1, (2)m(Vai)=Zm(ai)  for any sequence {ai) of 
mutual ly  disjoint elements of L, is a state on L. If  rn is a state that cannot  
be written in the form m = cm 1 + ( 1 -  c)m 2, where 0 < c <  1 and  ml,m z are 
distinct states, then m is called a pure state. Let M be a set of states on L 
and let P be the set of all pure states of L conta ined in M. If a ~ L, m E P, 
define P ~ = ( m E P : m ( a ) = l ) ,  L m = ( a ~ L : m ( a ) = l  }. If PaCPb implies 
a <<.b(a,b~L) and LmCLm~ implies m l = m  2 (ml ,m2EP) ,  we call ( L , M )  a 
quan tum logic. Let ( L , M )  be a quan tum logic; then for any  a E L ,  a~=O 
there is an m E P  such that m ( a ) =  1. Indeed,  if not,  then the relation 
P~=Po implies a = O ,  a contradict ion.  Let L ~  ( a E L : m ( a ) = O ) .  Clearly, 
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L , , = ( a •  ~ and L~177  A state rn~M is a superposi- 
tion of the states p , q ~ M  if p ( a ) = 0  and q ( a ) = 0  imply re (a )=0 ,  or, 
equivalently, if p(a)= 1 and q(a)= 1 imply re(a)= 1. A set S C P is said to 
be closed under superpositions if it contains every pure superposition of 
any pair of its elements. If S c P is not closed under superpositions, let 
A(S)  denote the smallest subset of P closed under superpositions and 
containing S. The set S C P is a sector if (i) S =  A(S),  (ii) if p,q ~ S then 
there is an r~A({p,q})  such that rvap, rvaq, (iii) if qEP,  qCZS then 
A((p,q))={p,q)  for any p ES.  We say that the superposition principle 
holds in ( L , M )  if A({p,q}):/:{p,q) for any p ,q~P,p4:q  (Pulmannovfi, 
1976). 

Let C be the set of all elements of L that are compatible with all the 
other elements, i.e., C - - ( a ~ L : a , - - ~ b  for all b ~ L ) .  C is called the center 
of L. It  was shown (Varadarajan, 1962) that C is a Boolean sub-o-algebra 
of L. A logic L is called irreducible if its center C is trivial, i.e., if 
C =  (0, 1 ). If the superposition principle holds in a quantum logic (L,M), 
then L is irreducible (Pulmannov~i, 1976). If p is a pure state and c ~ C, 
then p(c) = 1 or p(c) = 0 (Varadarajan, 1968). 

The center C of a logic L is discrete if there exists an at most 
countable set (Cn)n~ n of mutually disjoint elements of C such that C 
consists precisely of all the lattice sums V(c,,:n E Z) ,  where Z is an 
arbitrary subset of D. The c n are called atoms of C. If we define Lj = 
L[0, cj] = (b:  b E L, b < cj ), then Lj,j' E D, are irreducible logics (cj is the first 
element of Lj). The logic L can be thought of as a direct sum of the 
irreducible logics Lj. If p is a pure state of Lj, we define fi by f i(a)=p(aA 
ej)(a ~ L). Then fi is a pure state on L. Varadarajan (1968) has shown that 
the set P of all pure states of L can be written in the form P =  U/~, where 

= (fi:p is a pure state on Lj}. To any state m on L we can find the states 
m i on L i such that m(b)=~mi(bAci)m(ei), ( b E L )  if we set mi(bAei) = 
m(bAci)/m(ci), m(e,)v~O. If  m(ci )=0,  we set mi=0 .  Let M i be the set of m i 
for all m E M. If (L, M)  is a quantum logic, then (Li, 3,/,.) are also quantum 
logics. If the irreducible quantum logics (Li,Mi) are such that the super- 
position principle holds in them, then the sets Pi = ff~ A M are the sectors in 
P (Pulmannov~t, 1976). 

2. CENTER OF A Q U A N T U M  L O G I C  AND SECTORS 

Let (L, M)  be a quantum logic and let C be the (nontrivial) center of 
L. For  SI ,S2EP  we set SI~S 2 if Sl(C)=S2(C ) for all c E  C. Clearly, ~ is a 
relation of equivalence. Let [s] denote the equivalence class of P contain- 
ing sEP.  
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Theorem 1. If S c P  is a sector, t h e n p ~ q  for a n y p , q ~ S .  

Proof Let p , q E  S be such that  pTZq. Then  there is an e lement  c E C 
such that  p(c)---1 (say) and  q ( c ) = 0 .  By the p roof  of T h e o r e m  3 in 
Pulmannov~i (1976) then A({ p ,  q }) = (p ,  q }, which contradic ts  the supposi-  
t ion that  S is a sector. Hence  p ~ q .  

Theorem 2. Let ( L , M )  be a quan tum logic such that  the center  C 
of L is discrete. Let  L be the direct sum of Li0.c,l= L~, where  the 
q u a n t u m  logics (L i, Mi) are such that  the superposi t ion principle 
holds in them. Then  for  any  p,  q E P, p and  q belong to the same 
sector if and  only if p ~ q .  

Proof Let Pi = { ~ E P : p  is a pure  state on Li). Then  Pi are sectors in 
P. Let  q, i= 1,2, . . .  be  the a toms  of C. Clearly, p ~ q  i f fp (q)=q(q)  for  all i. 
Let  p--~q and  l e tp  E Pg0" T h e n p ( c ; )  = q(ci) - - -  1 andp(e l )  = q(q) = 0 for  i~io, 
which implies that  q E Pio, i.e., p and  q belong to the same sector  P~o" [] 

An  observable  on the logic L is a m a p  x : B ( R ) ~ L  f rom the Bore1 
subsets B(R) of the real line R into L such that  (i) x ( R ) - -  1,x(Z~)=0; (ii) if 
E D F - -  ~ then x(E)_L x(F), E, F E B(R); (iii) x ( U  Ei) = Vx(E i ) ,  if Ei D Ej 
=Z~ for ivaj, i,j= 1,2 . . . . .  The  spec t rum o(x) of an observable  x is the 
smallest  closed set F C R such that  x(F)--  1. An observable  x is b o u n d e d  if 
o(x) is bounded .  The  n o r m  of a b o u n d e d  observable  x is def ined by  
IIxII = sup {It[:t E o(x)}.  The  expecta t ion  of an observable  x in a state m is 
m(x) = fXm(x(dX)), if the integral  exists. 

For  a q u a n t u m  logic (L ,M)  we define a metr ic  on M by  setting 
d(p, q) = sup { Ip(x)  - q(x)]: x ~ X 1 }, where X 1 is the set of all observables  x 
on L such that  Ijxl] < 1. It  can  be shown that  [ [xI I=sup { Im(x ) I :mE m}  
(Gudder ,  1965). F r o m  this it follows that  d(p, q ) <  2 for  any  p,  q ~ M. An  
observable  x on L is simple if o ( x ) c { 0 ,  1}. If a E L ,  let x a be the simple 
observable  such that  x,({ 1 }) = a. Fo r  any  state m then m(x~) = re(a). 

Theorem 3. Let ( L , M )  be a q u a n t u m  logic and  letp, q E P  be such 
that  d(p,q)<2. T h e n p ~ q .  

Proof L e t p ~ q  and let c ~ C be such that  p ( c ) =  1 ,q (c )=0 .  Let  us set 
x = x  c - x c  • [As xc and  Xc • are compat ib le ,  x c - x ~  • exists (Varadara jan ,  
1968)]. Let  m be a state on L. T h e n  m ( x ) =  m(x~) - m(x~• - 1; i.e., 
]m(x)l -<< 1, hence II x II < 1. T h e n  p(x) - q(x) = p ( e )  + q(e • = 2, f rom which 
it follows that  d(p, q) = 2. �9 
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Theorem 4. In a quantum logic (L ,M) ,  the equivalence classes 
[s],sEP are open-closed sets in the topology induced by the 
metric d. 

Proof Let p be an element of [s]. By Theorem 3, the set { q E P: d(p, q) 
<2} is contained in [s]. This implies that [s] is open. As the equivalence 
classes [s], s E P, form a disjoint covering of P, they are also closed. �9 

If the conditions of Theorem 2 are satisfied, then the sectors are 
open-closed sets in P. Thus Theorem 5 can be considered as an analog of 
Proposition 4.5 in Roberts and Roepstorff (1969). 

3. MINIMAL S U P E R P O S I T I O N  PRINCIPLE AND S E C T O R S  

Let ( L , M)  be a quantum logic and P be the set of all pure states 
contained in M. For S C P and a E L, let us write S(a) = 0 if s(a) = 0 for all 
s E S .  Let S = { m ~ P : S ( a ) = O  imply m(a)--0} (see Varadarajan, 1968; 
Gudder,  1970a, b; Berzi and Zecca, 1974). Gudder  (1970b) introduced the 
following postulate (minimal superposition postulate, MSP): If S is any 
finite subset of P and m ~ S is such that m ~ Q for any subset Q ~ S, then 
{m, S l} -  f'l $ 2 ~  for any SI,SzCP such that S x M $2=0  and S l U $2~-~- S, 

Lemma 1. For any S c P ,  A ( S ) c S .  

Proof Let p, q ~ S and let p(a) =0, q(a) = 0 imply r(a) = O, r E P, a ~ L. 
Then S(a) = 0 imply r(a) = 0, i.e., r E S. From this it follows that S is closed 
under superpositions. From S c S we get A ( S ) c  A ( S ) =  S. �9 

Lemma 2. If the MSP holds in (L ,M )  then rEA({p,q})  implies 
q E A({ r,p }),p E A({ r, q}) for any mutually different p, q, r ~ P. 

Proof As A({p ,q} )={p ,q} -  (Pulmannovfi, 1976), by the MSP we 
have that A({r,p})fq{q}=/=~, i.e., q~A({r,p}).  Analogically we get p E  
A({r,q}). �9 

Theorem 5. If the MSP holds in (L ,M)  then A ( S ) =  S for any 
finite subset S c P. 

Proof For any s,p E P,A({s,p})= {s,p}-.  We shall proceed by induc- 
tion. Let A({s I . . . . .  sk})= {Sl,. . . ,Sk}- for any k <n  and for any {s 1 . . . .  ,sk} 
c P .  Let sE{s  1 ... . .  Sn+l}- be such that s ~ f f f o r  any S ~ { s  1 . . . . .  sn+l}. By 
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the MSP then there is apEP,pE{s , s ,+~)-N (s~ ..... s,)-=A({s,s,+~))N 
A((s  1 . . . . .  sn) ). T h e n p  E A ( ( s  1 . . . . .  s , ) )  c A ( { s  1 . . . . .  Sn+l) ). By Lemma 2, s E 
A((P,Sn+l) ), so that sEA((s~  . . . . .  s~+l) ). Now let q E ~  . . . . .  s,+_~)- be 
such that there is a subset S c (s 1 . . . . .  S,+l) such that q E S. Then S - - A ( S )  
c A ( ( S l , . . . , s ~ + l )  ) imply q E A ( ( s  1 . . . . .  sn+l) ). Thus we obtain  
( S 1 . . . . .  Sn + 1 ) - C A ( {  s 1 . . . . .  Sn + 1 ))"  The converse implication follows from 
Lemma 1. Hence, A ( S ) =  S for any finite S C P. �9 

For p, qEP,pvaq, let us set p ~ q  if there is an r E P  such that 
rEA(p,q)),r@p,rv/-q. Let us set p ~ p , p E P .  

Theorem 6. Let the MSP hold in the quantum logic ( L , M )  and let 
A(( p, q, r )) v a A({ p, q }) tO A(( q, r )) for any distinct states p, q, r E P 
such that p ~ q, q ~ r, r ~ A((p ,  q )). Then ~ is an equivalence rela- 
tion 

Proof. We have only to show the transitivity. Let p~q,q..~r,p,q,r E P 
be distinct states. If rEA((p,q)) then qEA((r,p)) by Lemma 2, which 
implies r~p. Let r ~ A ( ( p , q ) )  and let m EA({p,q,r)),m ~A((p,q)),m 
h({q,r}) .  Clearly, m4:p,q,r. If mEA((p,r))  then p ~ r .  If m~A((p,r)) ,  
then we get by the MSP that A((m,q))NA((p,r))va~. Let sEA((m,q))fq 
A(( p, r)). If s = p  then p E A((m,  q)) implies m E A(( p, q)), a contradiction. 
Thus s 4=p and analogically s var. Hence p ~ r. �9 

The following theorem shows that the condition in Theorem 6 is also 
necessary. 

Theorem 7. Let the MSP hold in (L,M) and let ~ be an equiva- 
lence relation. Then p ~ q , q ~ r  and A((p,q,r))=A((p,q})U 
A(( q, r}) imply r E A({ p, q )) (p, q, r distinct states in e) .  

Proof Let the MSP hold in ( L , M )  and let ~ be an equivalence 
relation. Let p ~ q  and q~r. Then there is an m EA({p,r)),mv~p,mq=r. 
A((p,r))cA({p,q,r))=A({p,q))uA((q,r))  implies mEA((p,q))  or m E  
A((q , r ) ) .  If mEA((p,q)),mvLq, then qEA((m,p)). But mEA({p,r))  
implies that A((m,p))cA({p,r)),  so that qEA((p,r)), i.e., rEA({p,q)). 
We get the same if m=q. If mEA({q,r)) we get analogically that r E  
A( (p ,q ) ) .  �9 

Theorem 8. If the suppositions of Theorem 6 hold, then P can be 
written as the union of sectors. 
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Proof We shall show that the equivalence classes Px of P by the 
relation ~ are sectors. (i) Let p, q E P,p ~ q and let r E A({ p, q}). If r yap, q 
then r E A ( { p , q } )  implies p EA(( r ,q} ) ,  i.e., r ~ q .  From this it follows that 
A(Px) = Px- (ii) and (iii) f rom the definition of sectors are evident. �9 

4. S U P E R P O S I T I O N  P R I N C I P L E  IN P R O J E C T I V E  L O G I C S  

An or thomodular  ~ lattice L is called a projective logic if the follow- 
ing conditions are satisfied (Varadarajan, 1968): 

(i) Given aTa0 in L, there is a point x <a .  
(ii) If  a=/=0 in L is the lattice sum of a finite set of points then 

L[0,al = (b E L: b < a } is a geometry of finite rank; we shall say 
that a is a finite element of L and write dim(a) for the dimen- 
sion of L[0.a 1. 

(iii) If x, a E L ,  a~O, 1 and x is a point, then there are p o i n t s y , z ~ L  
such t h a t y  <a,z <<.a • and x <  y V z .  

(iv) There exists at least one a E L such that 4 < dim(a). 

If L is projective and its lattice is complete, then every element a of L 
is the lattice sum of the points it contains. A projective logic with the 
property that any family of mutually disjoint points of L is at most  
countable (i.e., L is separable) is complete (Varadarajan, 1968). 

Let m be a state on a logic L. Let us set L m = { b @ L : m ( b ) = l  }. We 
shall say that m is supported if there is an element a m E L,a m 4=0 such that 
L m = { b E L: b/> a m }. The element a m is called a support of the state m. 

Theorem 9. Let ( L , M )  be a quantum logic such that L is a 
separable projective logic. In  addition, let the following condition 
be satisfied: re(a) = m(b) = 0 imply m ( a V b )  = O(a, b E L , m  ~ P). 
Then the superposition principle holds on (L, M). 

Proof First we show that any s E P is supported (see also Zierler, 
1961; Bugajska and Bugajski, 1972). If L ~  {a ~ L : s ( a ) =  0} = {0} then 
L s = (1 }. But then Ls C Lm for any m ~ P, which implies s = m, which is 
impossible. F rom this it follows that L~ a (0}. Then there exists at least 
one maximal subset of mutually disjoint elements in L ~ (by the Zorn 
lemma) and this subset is at most  countable. Let b be the supremum of this 
subset. Obviously b is a maximal element of L ~ Let a E L ~ then s(a)= 
0 , s ( b ) = 0  imply s (aVb)=O.  From the maximality of b it follows that 
a V b  = b, i.e., a < b. Thus L ~ = {a ~ L: a < b}, i.e., L, = {a E L: b • < a}, that 
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is, b • is the support  of s. We show that b • is a point.  Let e be a point  of L 
such that e ~< b • Then  there is a state q E P such that  q(e) = 1. Let  a C Lq, 
then f rom q(e)=l,q(a)=l it follows that q(aAe)=l ,  i.e., e<<,a. Hence, 
Lq={aCL:e<,.a}. But then L s c L  q implies s=q, i.e., b•  N o w  let 
S l , S z C P  , SI=/=S 2. Then there are points el, e 2 such that S l ( e l )  = 1, s2(e2) = 1. 
As Li0,elve2 ] is a geometry,  there is a point  eaCL, e3~el,e 2 such that  
e3~<elVe 2. Let s3cP  be such that s3(e3)=l .  Let a C L  be such that  
si(a)=l,sz(a)=l. Then el <a, ez<a imply e3<elVe2<a, i.e., s 3 ( a ) = l .  
Hence, s3CA({Sl,S2}). Clearly, SaVaSl,S2. Indeed,  if s 3 = s  1 then s3(e3) = 
1,s3(el) = 1 imply s3(el/ke3)= 1, so that  e l /~e34:0,  i.e., e 1 = e 3, a contradic-  
tion. Hence, the superposit ion principle holds in (L, M).  �9 

We note that in the case of a general projective logic (not  necessarily 
separable) the superposit ion principle need not hold unrestrictedly if there 
are states in P with no supports.  

Lemma 3. Let (L,M) be a quan tum logic such that L is a 
complete lattice and all states in P are supported.  Let  us denote  by 
suppm the support  of the state m. Then  the following hold. 

(i) If m c P ,  then suppm is a point  in L. 
(ii) Given x C L, x v a 0, there is a point  a C L such that  a ~< x. 

(iii) Every element x C L is the lattice sum of points con- 
tained in it. 

(iv) m(a~)=  1,o~CA,A is any set, then m ( A a ~ ) = l .  

Proof (i) Let x C L,x=/=O be such that x ~< suppm.  Then  there is a 
state m l c P  such that m l ( x ) = l .  F rom m l ( s u p p m ) = l  it follows that  
Lm C Lm,, i.e., m= m r Hence, x = s u p p m .  

(ii) For  xva0  there is an m C P  such that m ( x ) = l ,  then suppm~<x 
and supp m is a point  by (i). 

(iii) Let aCL,  a4:O. For  any mCPa, suppm~<a.  Let b C L  be such 
that  suppm ~<b for any m C Pa. Then  m(b)= 1 for any m c P~ imply that 
P~ C Pb and f rom this it follows that a ~< b. Hence,  a = V { supp rn: m ~ P~ }. 
N o w  let q ~< a be a point. Then  there is an m C P such that m(q) = 1. F r o m  
supp m ~< q it follows that supp m = q and q ~< a implies that m c P~. Hence,  
a=V{q:q<~a,q is a point}. 

(iv) m(a~)= 1,a C A  imply that suppm ~<a~,a CA,  i.e., suppm ~</k 
( a~: a C A }. Hence, m(/k  a~) = 1. �9 

Points el,e 2 C L are perspective if there is a point  e 3 C L,  e3=/&el,e 2 such 
that e 3 ~< g i V e  2. 
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Theorem 10. Let  ( L , M )  be  a q u a n t u m  logic such  tha t  L is a 
c o m p l e t e  la t t ice  a n d  all  the  s ta tes  in  P are  suppor t ed .  T h e n  for  a n y  

m l, m 2 E P ,  m I ~ m 2 if a n d  o n l y  if supp  m 1 a n d  supp  m 2 are pe rspec-  
tive. 

Proof Let m l ~ m 2 ;  t h e n  there  is a s ta te  m E P  such  tha t  m E  
A ( { m l , m 2 }  ), mv~ml,  m2. F r o m  this it fol lows tha t  s u p p m  1 <a, suppm2<<,a 

i m p l y  s u p p m  <a(a  E L ) .  H e n c e ,  s u p p m  < s u p p m l V s u p p m  2. N o w  let  

s u p p m  1 a n d  s u p p m  2 be  perspec t ive .  Le t  e E L  be  a p o i n t  such  tha t  

e < supp  m 1 V s u p p  m 2, e v ~ supp  m l, s u p p  m 2. Let  m E P be  such  that  m(e) = 1. 
Clear ly ,  s u p p m  = e. If  a E L  is such  tha t  m ~ ( a ) - - 1 , m z ( a ) =  1, t hen  s u p p m  1 

< a, supp  m 2 < a i m p l y  supp  m < a, i.e., re(a) = 1. Hence ,  m E A({ m l, m 2)). �9 
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